Felodipine inhibits nuclear translocation of p42/44 mitogen-activated protein kinase and human smooth muscle cell growth.
نویسندگان
چکیده
OBJECTIVE Smooth muscle cell (SMC) proliferation contributes to vascular structural changes in cardiovascular disease. Ca(2+) antagonists exert antiproliferative effects and may also be clinically beneficial in the patients. However, the underlying mechanisms of action remain elusive. Activation of mitogen-activated protein kinases (MAPK), in particular p42/44mapk plays a central role in cell proliferation. We hypothesise that Ca(2+) antagonists inhibit cell proliferation by interfering with the p42/44mapk pathway in human SMC. METHODS SMC were cultured from human aorta. Cell proliferation was analysed by [3H]thymidine incorporation. Activation of p42/44mapk and the nuclear target protein Elk-1 was analysed by phosphorylation and p42/44mapk nuclear translocation by confocal microscope. RESULTS PDGF-BB (10 ng/ml) stimulated [3H]thymidine incorporation, phosphorylated p42/44mapk, caused nuclear translocation of the enzymes and phosphorylated the nuclear target protein Elk-1. Felodipine (10(-7) to 10(-5) mol/l) inhibited [3H]thymidine incorporation to PDGF-BB, had no effect on p42/44mapk phosphorylation. However, p42/44mapk nuclear translocation and Elk-1 activation stimulated by PDGF-BB were prevented by the Ca(2+) antagonist. CONCLUSION Activation of p42/44mapk, subsequent nuclear translocation and activation of Elk-1 are essentially associated with human SMC proliferation. The Ca(2+) antagonist felodipine prevents p42/44mapk nuclear translocation (but not its activation) associated with inhibition of human SMC growth.
منابع مشابه
Estrogen regulation of endothelial and smooth muscle cell migration and proliferation: role of p38 and p42/44 mitogen-activated protein kinase.
OBJECTIVE Restenosis is a major limitation of percutaneous coronary intervention. Migration and proliferation of vascular cells remain a cornerstone in neointimal formation. The cardioprotection of estrogen is well recognized, but the intracellular mechanisms related to these beneficial effects are not completely understood. METHODS AND RESULTS We investigated the effects of 17beta-estradiol ...
متن کاملp42/44 Mitogen-activated protein kinase regulated by p53 and nitric oxide in human pulmonary arterial smooth muscle cells.
Although nitric oxide (NO) is known to inhibit vascular smooth muscle cell proliferation, the subcellular molecular mechanisms involved with the inhibitory signal transduction pathways are uncertain. We investigated the effect of exogenous NO on cell proliferation and the expression of p53, p21, and phosphorylated p42/44 mitogen-activated protein kinase (MAPK) in human pulmonary arterial smooth...
متن کاملNuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry.
Mitogen-activated protein kinase (MAPK) modules, composed of three protein kinases activated by successive phosphorylation, are involved in the signal transduction of a wide range of extracellular agents. In mammalian cells, mitogenic stimulation triggers the translocation of p42/p44MAPK from the cytoplasm to the nucleus, whereas the other protein kinases of the module remain cytosolic. Since M...
متن کاملSpecific contribution of estrogen receptors on mitogen-activated protein kinase pathways and vascular cell activation.
Randomized clinical trials have not provided conclusive data that hormone replacement therapy confers cardioprotection against coronary artery disease in postmenopausal women. However, other studies have shown that estrogens can induce beneficial effects on the vasculature. Nevertheless, the specific contribution of estrogen receptors (ERs) alpha and beta on vascular cells is not well character...
متن کاملPotentiation of nitric oxide-induced apoptosis in p53-/- vascular smooth muscle cells.
The functional role of p53 in nitric oxide (NO)-mediated vascular smooth muscle cell (VSMC) apoptosis remains unknown. In this study, VSMC from p53-/- and p53+/+ murine aortas were exposed to exogenous or endogenous sources of NO. Unexpectedly, p53-/- VSMC were much more sensitive to the proapoptotic effects of NO than were p53+/+ VSMC. Furthermore, this paradox appeared to be specific to NO, b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cardiovascular research
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2002